

M. Poelman¹, E. Khousakoun¹, A.-L. Dechief¹, B. Belloncle¹, A. Mezy², E. Barbero³, I. Burzic⁴, C. Sevrin⁵, F. Deliane⁶, C. Dulucq⁶

1. MATERIA NOVA, Avenue Copernic 3 7000 Mons Belgium

2. SIKEMIA Cap Gamma, 1682 rue de la Valsière 34790 GRABELS, France

3. ITENE Calle Albert Einstein 1, Parque Tecnológico de Valencia, 46980 Paterna (Valencia), Spain

4. KOMPETENZZENTRUM HOLZ GmbH Altenberger Straße 69, A-4040 Linz, Austria

5. INSTITUT FRANÇAIS DU TEXTILE ET DE L'HABILLEMENT, 14 Rue des Reculettes, 75013 Paris, France

6. APPLUS RESCOLL 8 allée Geoffroy Saint Hilaire, 33600 Pessac, France

Introduction

PFAS, What?

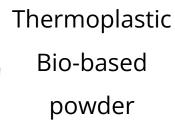
PFAS (per and polyfluorinated alkyl substances) provide excellent water and oil repellency properties.

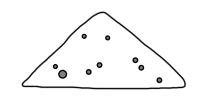
Why is it a problem?

PFAS are known as 'forever chemicals' due to their resistance, widespread, and linked to environmental and health problems like cancer and decreased fertility.

How?

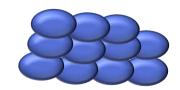
Exposure could happen through eating, drinking, or using consumer products containing PFAS.

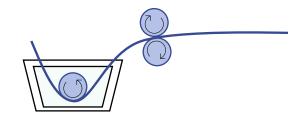


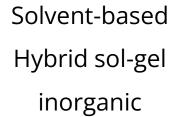


3IO-SUSHY

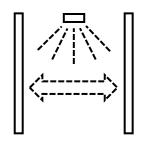
Develop 3 PFAS-free bio-based coatings


Objective

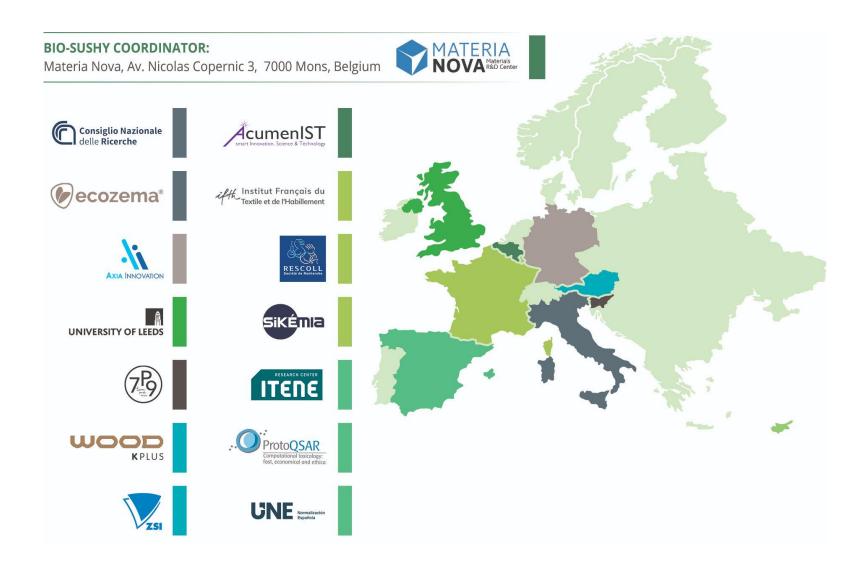




Water-based Hybrid sol-gel organic



Hydro/oleophobic additives



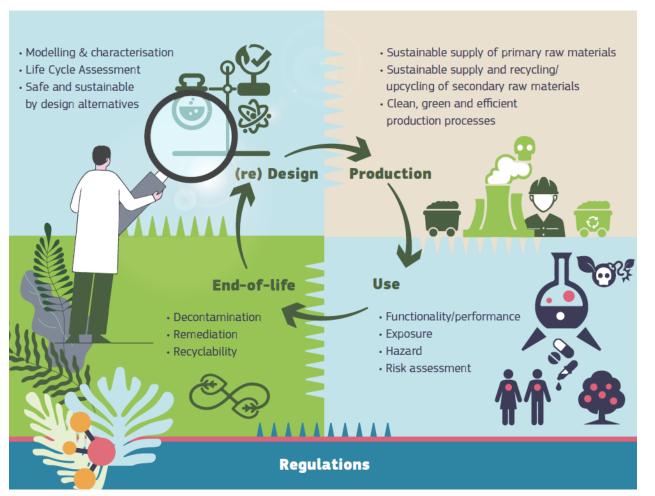
Team

The BIO-SUSHY project is a collaboration between 14 partners from 7 EU countries and 1 EU-associated country: 6 RTDs, 5 SMEs, 1 large company, 1 university, and 1 national association.

BIO-SUSHY Methodology – Based on 3 pillars

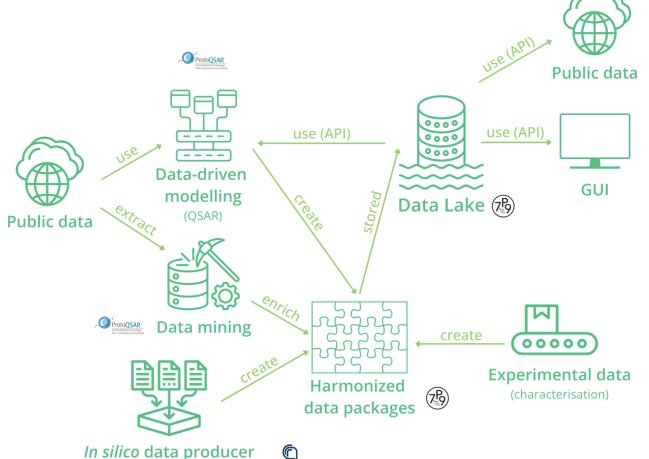
SAFE AND SUSTAINABLE BY DESIGN

MODELLING



R&I COATING
DEVELOPMENT

Safe and Sustainable by Design


- SSbD Framework applied to PFASfree coatings
 - safe by material design,
 - safe by process design,
 - toxicological studies,
 - · LCA, LCC, SLCA
- Social acceptance
- Standardisation roadmap

Data-Driven Approaches

(hazard modelling, transport and fade simulations)

- Development of the BIO-SUSHY set of computation tools for SSbD of coatings
- Development of integrated approaches supported by the BIO-SUSHY HUB for effective data management and sharing (FAIR)

R&I Coating Development

 Development of 3 novel SSbD coatings materials with water and oil

repellency
Terminal Function
Tailored to the targeted properties / applications

Grafting Function

Adjusted to the chemical nature of the materials to modify

- Validation of coating materials with 3 case studies
 - Textile
 - Food packaging

FOOD PACKAGING

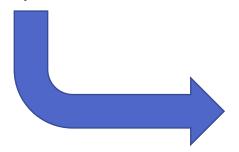
Hybrid sol gel coating for glass packaging

Glass packaging for visqueous liquids: solutions to allow high liquid sliding without leaving any residue from the surface

- Waste reduction (up to 25%)
- Aesthetics: keep clean surface (crucial for cosmetic applications)
- Facilitate reuse of the container (easy cleaning)

BIO-SUSHY COATING for GLASS PACKAGING

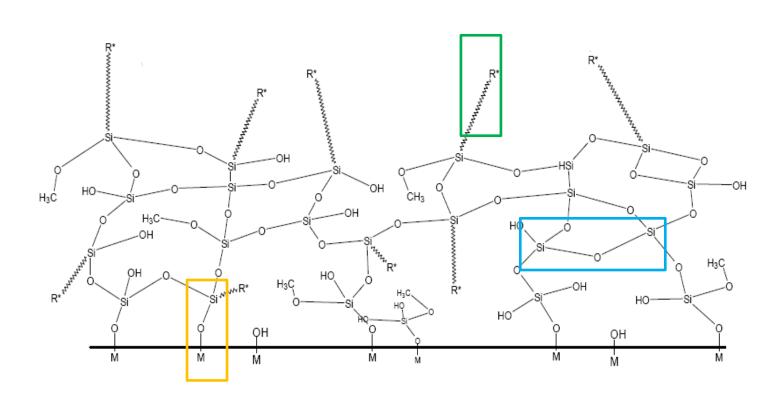
- Hybrid PFAS free hybrid sol gel coatings for water and oil repellencies
- Solvent based with high inorganic content and bio-based content up to 25%
- Neutral coating to avoid migration from both side of the coating with a very limited release that would not alter the emulsion (skin contact, flavour...)
- Requirements of packaging and particularly cosmetic industry
- Compatible with industrial process (spray, curing)
- Transparency/transluency



Requirements of glass packaging for comestic applications

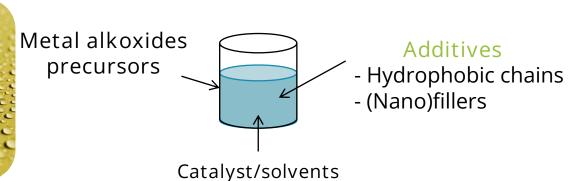
Inner application of cosmetic glass containers with targeted chemical and mechanical properties:

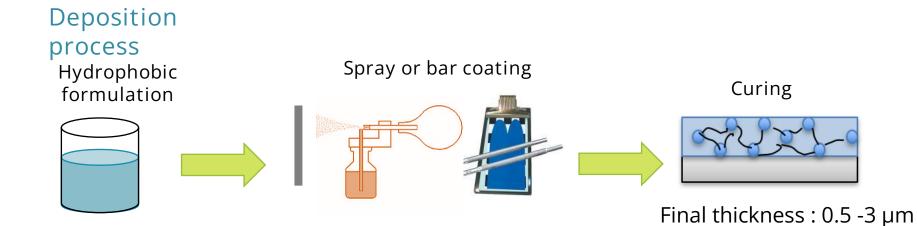
- Hydrophobicity/oleophobicity: 10 < surface tension < 20 mN.m-1
- Durability
- Compatible with skin contact



Specifi	Standards		
Adhesion	Cross-cut test	ISO 2409	
Scratch resistance	Sclerometer hardness test Pencil hardness tester	ISO4586	
Abrasion resistance	Washability and scrubbing resistance tester	ISO11998	
Water repellency (WCA) Water sliding angle	>100° < 20° (drop 50 µL)	ISO19403-2	

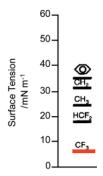
Hybrid sol gel coating for glass packaging


- ✓ Organic/inorganic modulable ratio to cover a large panel of properties/applications
- ✓ Low thickness of the coating inducing small modification of the surface aspect and topography
- ✓ Good mechanical, thermal and chemical resistance
- ✓ Flexibility (compatible with shaping) by increasing organic content
- ✓ Versality of the application process making possible application on site or in industrial chains of 3D complex shapes.
- ✓ Possible to apply on various substrates (glass, metals, polymeric substrates, paper,...)



Hybrid sol gel coating for glass packaging

- Nature of the additives
- Influence of the additives amount
- Curing: UV or thermal
- Ratio of precursors

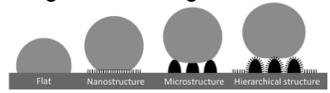


PFAS replacement strategy

(1) Substitution of PFAS by methyl group

Basis of the following order of increasing surface energy

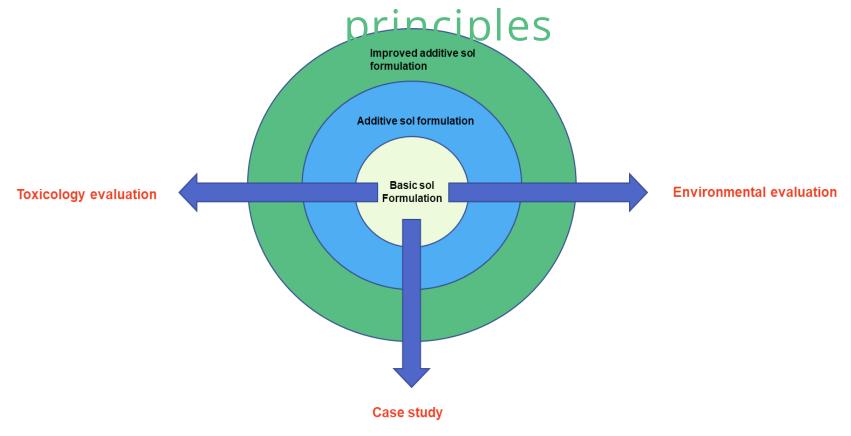
$$CF_3 < CF_2 < CH_3 < CH_2$$


Replacement of PFAS by –CH₃ group at the top surface of the coating

(2) Increasing density of -CH₃ group at the surface (fillers)

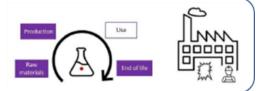
Maximize the -CH₃ group at the top surface of the coating

(3) Controlling surface roughness


Surface structuration by incorporation of (nano)fillers

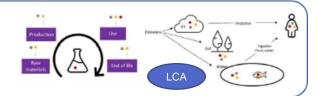
Substrate

Iterative development process guided by SSbD



SSbD assessment workflow

Step 1. Hazardous properties of the chemical/material in question


Step 2. Human health and safety aspects of production and processing

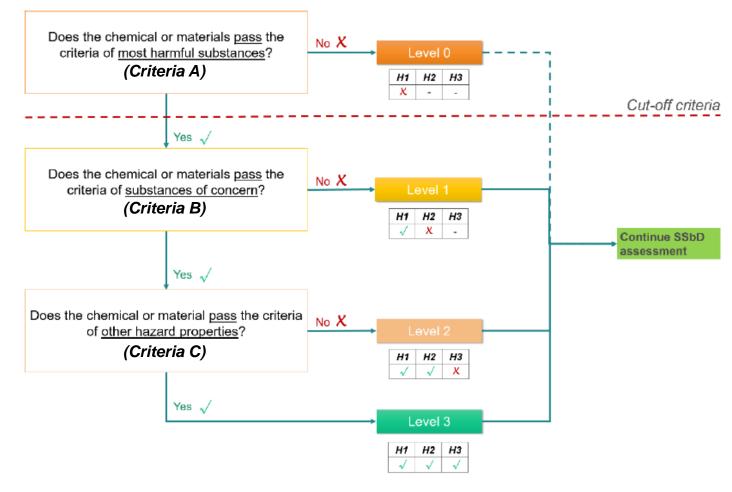
Step 3. Hazards and risks of the final application of the chemical or material in question

Step 4. Environmental impacts throughout the life cycle of the chemical or material in question

<u>Commission Recommendation – EU Assessment Framework for "safe and sustainable by design"</u> <u>chemicals and materials – Link</u>

SSbD assessment workflow

Step 1. Hazardous properties of the chemical/material in question

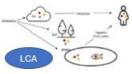

For Step 1, four levels are currently defined (*from 'Level 0' to 'Level 3'*) that will allow the assessor to rank a specific chemical based on these levels and further to integrate the results of the hazard-based evaluation to the overall SSbD assessment.

Level 0 - chemicals or materials considered most harmful substances (Group A) → Prioritized for substitution

Level 1 - chemicals or materials that induce chronic effects, part of the substances of concern (Group B) → Substituted as far as possible

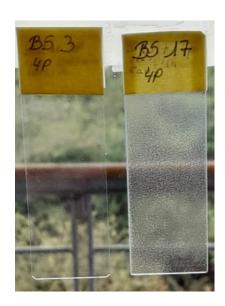
Level 2 - chemicals or materials with other hazardous properties (not included in Group A and B) → Flagged for review and eventually reduce toxic effects

Level 3 - chemicals or materials that pass all safety criteria in Step 1.



SSbD assessment workflow

Step 4. Environmental impacts throughout the life cycle of the chemical or material in question

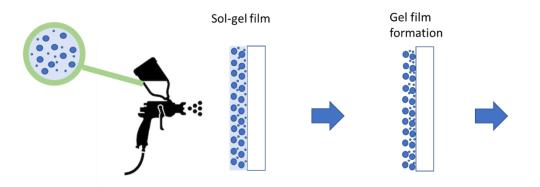


1st iteration: substitution of PFAS by PDMS and oleic acid

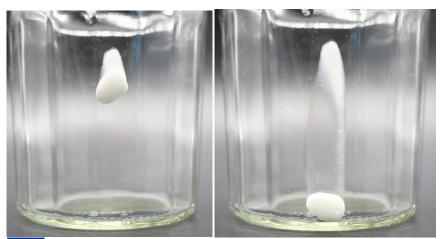
Sol formulation	Precursors	Additive	MEK test	WCA (°)	HCA (°)	Surface energy (Nm/m)	Adhesion	Sclerometer
BS3	TEOS/MTES	-	ok	82 ± 1	36±1	31±1	Cat 0	30N ok
BS14	TEOS/MTES	PDMS	ok	85±1	27 ±1	30±1	Cat 0	30N ok
BS16	TEOS/MTES	Oleic acid	ok	89±1	42 ±1	26±1	Cat 0	30N ok
BS17	TEOS/MTES	PDMS/Oleic acid	ok	100 ± 1	48±1	21±1	Cat 0	30N ok

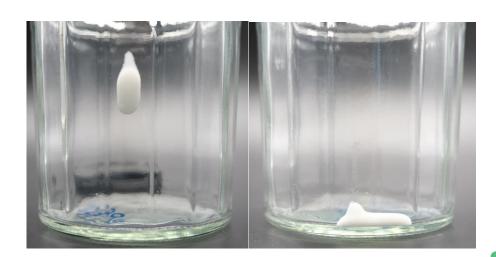
HCA teflon foil: 46.5°

Current composition		SSbd assessment harmonized	Replacement
Precursors	TEOS	Low risk	-
	MTES	Negligible risk	-
Catalyst	Acetic acid	Medium risk	Citric acid
Solvents	Methoxypropanol	Low risk	-
Additives	PDMS	Low risk	PDMS from Sikemia
	Oleic acid	Low risk	-


LCA: Impact of PDMS on the formulation on Ozone depletion impact category

CASE STUDY Coating application and performances


Spray-coating technique deposition: industrial processing



With SG coating without PFAs

Without coating

Water-based cream

CASE STUDY Coating application and performances

Improvement of the coating chemically (WCA, sliding) vs mechanically (durability, adhesion)

Sol-Gel	Sol-Gel Additives			Water sliding angle WCA (°)		HCA (°)	
	PDMS 3	Cx	PDMS 5	PDMS 6			
BS85	0.001-1%	0.001-1%	-	-	18	93 ± 1	31 ± 1
BS88	-	0.001-1%	0.001-1%	0.001-1%	16	102 ± 2	35 ± 1
BS90	-	0.001-1%	0.001-1%	0.001-1%	13	103 ± 2	37 ± 1

- Hydrophobic (WCA 103 ± 2°)
 Oleophobic (HCA 37 ± 1°)
- Low surface energy (22 ± 1 Nm/m)
- Water **sliding angle** (13 \pm 1° for 50 μ l water)
- Good **mechanical properties** (Adhesion cat 0 and sclerometer 30N)
- **Durability**: Immersion test in water (after 14d):

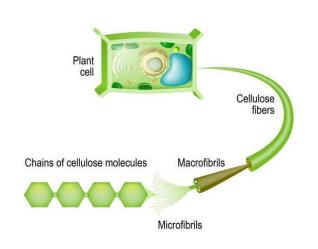
WCA $103 \pm 2^{\circ}$

Water sliding angle 21 ± 3° for 50µl water

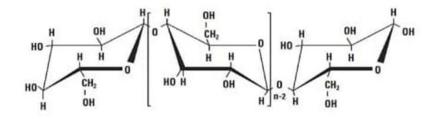
Water sliding angle 9 ± 2° for 50µl water

CASE STUDY Coating application and performances

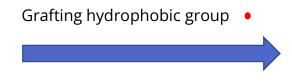
Sol-Gel	Sol-Gel Additives			Water sliding angle WCA (°) HCA (°)			
	PDMS 3	Cx	PDMS 5	PDMS 6			
BS90	-	0.001-1%	0.001-1%	0.001-1%	13	103 ± 2	37 ± 1

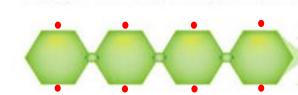


Sol gel pigmented to check application uniformity within the flask



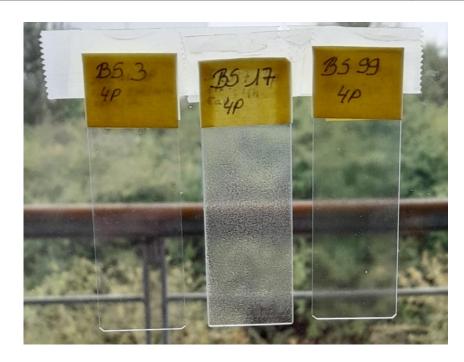
2nd iteration: Replacement of PDMS by functionalized cellulose





Chemical structure of cellulose

LCA: functionalized cellulose lowered impact Ozone depletion impact (vs PDMS)

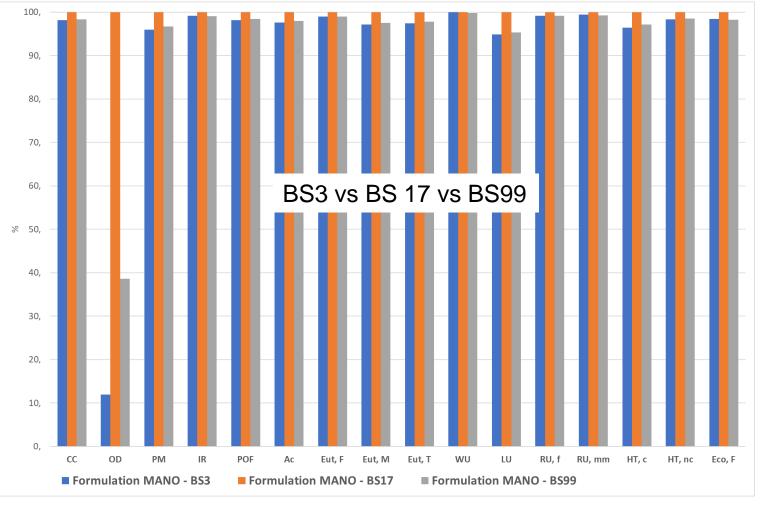


2nd iteration: Replacement of PDMS by functionalized cellulose

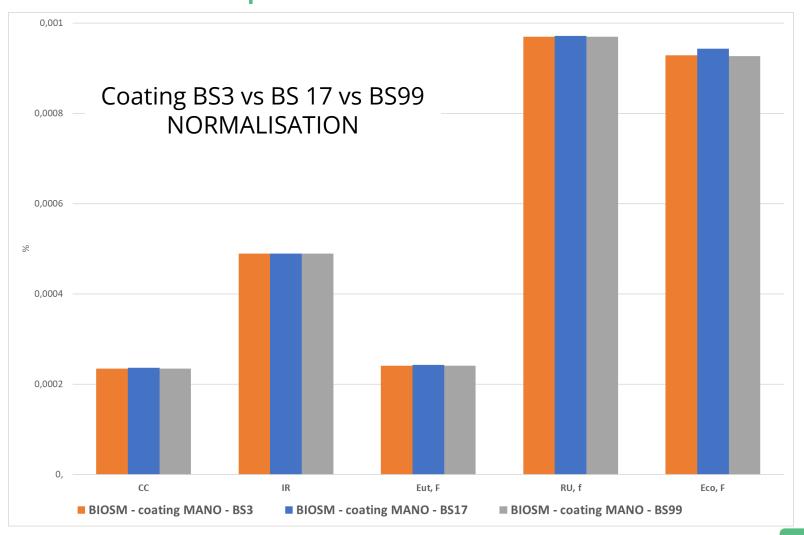
Sol-Gel	Additives	MEK test	WCA (°)	HCA (°)	Sliding angle (50 µl)
BS102	Unmodified cellulose	OK	84+/-2	<20	41,4+/-1,1
BS98	Modified cellulose + Cx	OK	94+/-1	34+/-1	13,7+/-0,4
BS99	Modified cellulose	OK	96 ± 1	35 ± 1	12

MEK test: OK

Cross cut: Class 0


Sclerometer: 30N OK

SSbD – Steps 1-4


- Step 1 and 2: data missing for modified cellulose -> next steps
- Step 3: to be done
- Step 4: LCA shows that with BS99 (replacement of PDMS by modified cellulose): improved ozone depletion impact compared to PDMS containing formulation

SSbD – Steps 1-4

- Step 1 and 2: data missing for modified cellulose -> next steps
- Step 3: to be done
- Step 4: LCA shows that with BS99 (replacement of PDMS by modified cellulose): improved ozone depletion impact compared to PDMS containing formulation
- After impact normalisation: almost the same impacts for all the coatings

Conclusions and next steps

- SSbD: used as eco-design tool in an iterative approach to obtain satisfying performances with a safe and sustainable product and process
- Product:
 - Promising results for PFAS replacement in hydrophobic sol gel coatings
 - Oleophobic properties still need to be further improved
 - % biobased content
 - Replacement of solvent -> water
- Process: to be modelled
- End-of-life scenarios: recycling or reuse, both will be evaluated

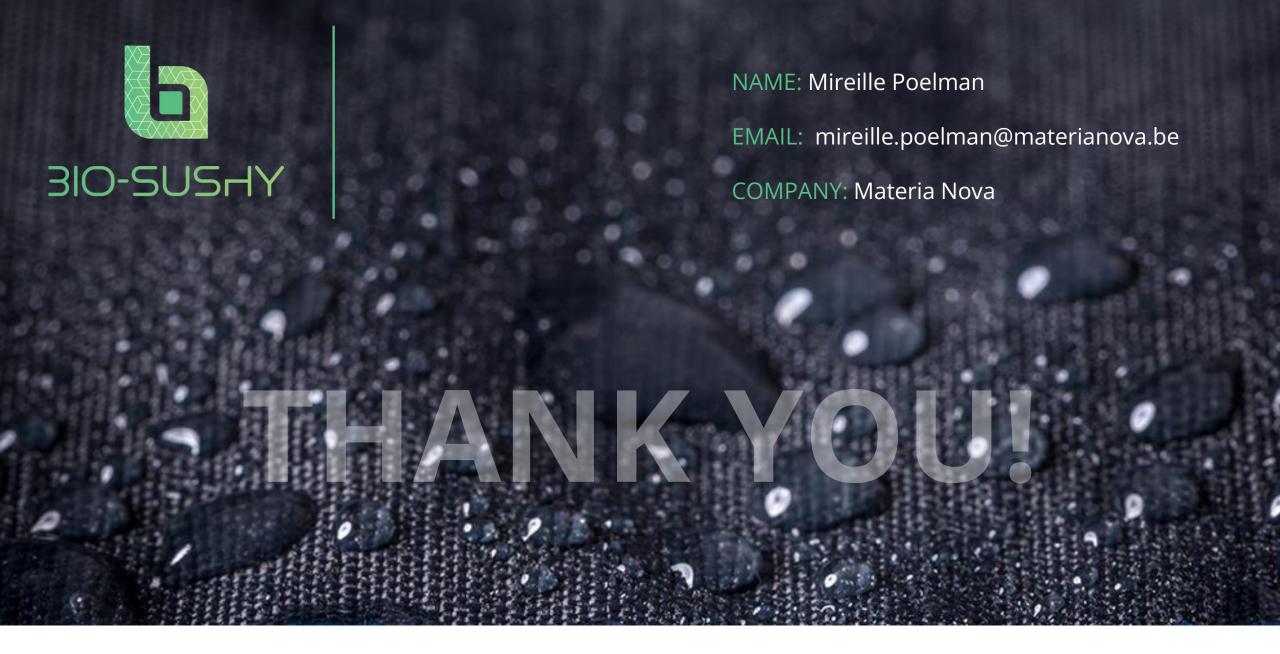
BIO-SUSHY project

- Starting Date: January 1st 2023
- Duration: 48 months
- Coordination: Materia Nova

Funded by the European Union

- Call and topic: HORIZON-CL4-2022-RESILIENCE-01-23 Safeand sustainable-by-design organic and hybrid coatings (RIA)
- GA number: 101091464

Learn more about the BIO-SUSHY project


www.bio-sushy.eu info@bio-sushy.eu

@BIO-SUSHY Project

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.